Earthquake prediction is a branch of the science of seismology concerned with the specification of the time, location, and magnitude of future earthquakes within stated limits. Many methods have been developed for predicting the time and place in which earthquakes will occur. Despite considerable research efforts by seismologists, scientifically reproducible predictions cannot yet be made to a specific day or month.
But in most recent developments, Researchers from University of Cambridge in the UK and Boston University in the US studied the interactions among earthquakes with the hope of developing a method to predict earthquakes.
Millions of lives has been lost due to this natural disaster. Great cuties brought to the ground and infrastructure destroyed As a result of the fact that it is one if not the only natural disaster that scientist have not yet been able to fully tackle by predicting its actual period of occurrence.
Scientists have developed an artificial intelligence (AI) system to successfully predict earthquakes, an advance that may help prepare for natural disasters and potentially save millions of lives.
The study, published in the journal Geophysical Review Letters, identified a hidden signal leading up to earthquakes, and used this ‘fingerprint’ to train a machine learning algorithm to predict future earthquakes.
Researchers from University of Cambridge in the UK and Boston University in the US studied painstakingly the interactions among earthquakes, precursor quakes, tremors and faults, with the hope of developing a method to predict earthquakes.
The system they used was an efficient lab-based tech system that mimics actual earthquakes, they used machine learning techniques to analyse the acoustic signals coming from the ‘fault’ as it moved and search for patterns. Researchers used steel blocks to closely mimic the physical forces at work in a real earthquake, and also records the seismic signals and sounds that are emitted from collisions. Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.
“This is the first time that machine learning has been used to analyse acoustic data to predict when an earthquake will occur, long before it does, so that plenty of warning time can be given – it is incredible what machine learning can do,” said Colin Humphreys of Cambridge University
Machine learning was then used to find the relationship between the acoustic signal coming from the fault and how close it is to failing. The machine learning algorithm was able to identify a particular pattern in the sound, previously thought to be nothing more than noise, which occurs long before an earthquake, researchers said.
The characteristics of this sound pattern can be used to give a precise estimate of the stress on the fault and to estimate the time remaining before failure, which gets more and more precise as failure approaches and the machine learning enables the analysis of datasets too large to handle manually and looks at data in an unbiased way that enables discoveries to be made.
Like the statement I heard while growing up “when there is life there is hope’ but now I said “when there is technology there is still hope”.
Discover more from TechBooky
Subscribe to get the latest posts sent to your email.